Selective regulation of autophagy by the Iml1-Npr2-Npr3 complex in the absence of nitrogen starvation
نویسندگان
چکیده
Autophagy is an evolutionarily conserved pathway for the degradation of intracellular contents. How autophagy is regulated, especially upon changes in metabolic and nutritional state, remains poorly understood. By using a prototrophic strain of Saccharomyces cerevisiae, we observed that, unexpectedly, autophagy is strongly induced simply upon switch from a rich medium to a minimal medium in the complete absence of nitrogen starvation. This novel form of autophagy was termed "non-nitrogen-starvation (NNS)-induced autophagy." A visual screen uncovered three regulators of autophagy-Iml1p, Npr2p, and Npr3p-which function in the same complex and are selectively required for NNS-induced autophagy. During NNS-induced autophagy, Iml1p localized to either preautophagosomal structures (PAS) or non-PAS punctate structures. This localization suggests that Iml1p or the Iml1p-Npr2p-Npr3p complex might regulate autophagosome formation. Ultrastructural analysis confirmed that autophagosome formation was strongly impaired in Δiml1, Δnpr2, and Δnpr3 cells during NNS-induced autophagy. Moreover, Iml1p contains a conserved domain that is required for NNS-induced autophagy as well as complex formation. Collectively, our findings have revealed the existence of additional mechanisms that regulate autophagy under previously unrecognized conditions, in response to relatively more subtle changes in metabolic and nutritional state.
منابع مشابه
Reciprocal conversion of Gtr1 and Gtr2 nucleotide-binding states by Npr2-Npr3 inactivates TORC1 and induces autophagy
Autophagy is an intracellular degradation process that delivers cytosolic material to lysosomes and vacuoles. To investigate the mechanisms that regulate autophagy, we performed a genome-wide screen using a yeast deletion-mutant collection, and found that Npr2 and Npr3 mutants were defective in autophagy. Their mammalian homologs, NPRL2 and NPRL3, were also involved in regulation of autophagy. ...
متن کاملA Genome-Wide Screen for Regulators of TORC1 in Response to Amino Acid Starvation Reveals a Conserved Npr2/3 Complex
TORC1 is a central regulator of cell growth in response to amino acid availability, yet little is known about how it is regulated. Here, we performed a reverse genetic screen in yeast for genes necessary to inactivate TORC1. The screen consisted of monitoring the expression of a TORC1 sensitive GFP-based transcriptional reporter in all yeast deletion strains using flow cytometry. We find that i...
متن کاملAmino acid deprivation inhibits TORC1 through a GTPase-activating protein complex for the Rag family GTPase Gtr1.
The Rag family of guanosine triphosphatases (GTPases) regulates eukaryotic cell growth in response to amino acids by activating the target of rapamycin complex 1 (TORC1). In humans, this pathway is often deregulated in cancer. In yeast, amino acids promote binding of GTP (guanosine 5'-triphosphate) to the Rag family GTPase Gtr1, which, in combination with a GDP (guanosine diphosphate)-bound Gtr...
متن کاملGATOR1 regulates nitrogenic cataplerotic reactions of the mitochondrial TCA cycle
The GATOR1 (SEACIT) complex consisting of Iml1-Npr2-Npr3 inhibits target of rapamycin complex 1 (TORC1) in response to amino acid insufficiency. In glucose medium, Saccharomyces cerevisiae mutants lacking the function of this complex grow poorly in the absence of amino acid supplementation, despite showing hallmarks of increased TORC1 signaling. Such mutants sense that they are amino acid reple...
متن کاملThe Loss of Lam2 and Npr2-Npr3 Diminishes the Vacuolar Localization of Gtr1-Gtr2 and Disinhibits TORC1 Activity in Fission Yeast
In mammalian cells, mTORC1 activity is regulated by Rag GTPases. It is thought that the Ragulator complex and the GATOR (GAP activity towards Rags) complex regulate RagA/B as its GDP/GTP exchange factor (GEF) and GTPase-activating protein (GAP), respectively. However, the functions of components in these complexes remain elusive. Using fission yeast as a model organism, here we found that the l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 22 شماره
صفحات -
تاریخ انتشار 2011